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Simulation of interface and free surface �ows in a viscous
�uid using adapting quadtree grids

Deborah Greaves∗;†;‡
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SUMMARY

A new adaptive quadtree method for simulating laminar viscous �uid problems with free surfaces and
interfaces is presented in this paper. The Navier–Stokes equations are solved with a SIMPLE-type
scheme coupled with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)
(Numerical prediction of two �uid systems with sharp interfaces, Ph.D. Thesis, Imperial College of
Science, Technology and Medicine, London, 1997) volume of �uid (VoF) method and PLIC recon-
struction of the volume fraction �eld during re�nement and dere�nement processes. The method is
demonstrated for interface advection cases in translating and shearing �ow �elds and found to provide
high interface resolution at low computational cost. The new method is also applied to simulation of
the collapse of a water column and the results are in excellent agreement with other published data.
The quadtree grids adapt to follow the movement of the free surface, whilst maintaining a band of the
smallest cells surrounding the surface. The calculation is made on uniform and adapting quadtree grids
and the accuracy of the quadtree calculation is shown to be the same as that made on the equivalent
uniform grid. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are many engineering applications where simulation of a viscous �uid with a free
surface or interface with another �uid is important. For example, wave sloshing in tanks,
wave loading and run-up on ships and marine and coastal structures, bubble �ow in pipes
and multiphase �ows. Accurate modelling of a viscous �uid free surface �ow is an extremely
challenging problem in CFD because of the moving air–water interface together with the
non-linear governing equations and boundary conditions. In addition, the position of the free
surface at a given time is not known in advance and must be calculated as part of the solution.
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1094 D. GREAVES

Potential �ow models, in which the �uid is considered inviscid, have been used successfully
to simulate inertia driven e�ects [1, 2], such as wave di�raction and loading. However, they
are unable to predict viscous e�ects, such as vortex shedding and separation, which require
the Navier–Stokes equations to be solved. The Navier–Stokes equations are non-linear and
are linked, through the pressure, to the mass conservation equation. Their solution is usually
by an iteration technique that resolves the complex coupling between pressure and velocity,
such as the pressure correction or arti�cial compressibility method [3].
Various techniques have emerged to predict the position of the free surface during the

solution in time and fall into one of two categories. These are interface tracking methods,
which include moving mesh, front tracking [4] and particle tracking schemes [5]; and interface
capturing methods, which include volume of �uid (VoF) and level set techniques. Moving
mesh and front tracking methods typically solve the �ow equations in the liquid region only
and the free surface makes a moving upper boundary on the computational domain. These
methods may be accurate, but, as the free surface has to be single valued, cannot be used
to calculate major deformations of the interface such as breaking waves where the interface
overturns, breaks up and recombines. Particle tracking methods tend to be expensive and not
practical in three dimensions. On the other hand, front capturing methods can be used for
modelling large-scale deformations of the interface including wave break up and merging.
They di�er from front tracking in that the solution is calculated in the combined air and
water �uid domains, with the �uid properties changing at the interface. The interface is then
located from the zero contour of a distance function in the case of level set [6] and from the
volume fraction �eld in the VoF method [7].
A VoF methodology is selected for use in this work; the basic method is robust and �exible

and VoF schemes are widely used [7–9]. The major drawbacks of this method are its tendency
to smear the interface and the high CPU cost due to the need for �ne grids and small time
steps. In order to overcome these problems, a new method is proposed in this work in which
the high resolution CICSAM [10] interface advection scheme is implemented on adapting
quadtree grids [11]. The Navier–Stokes equations are solved using a SIMPLE discretization of
the convective terms together with collocated variables. Special interpolations are needed at the
interface between cells of di�erent size, i.e. at hanging nodes. Adapting quadtree grids provide
extra resolution locally in areas of interest and have proved successful in the simulation of
separated �ows [11], where the overall size of the grid is reduced signi�cantly for a given
accuracy by providing high resolution where the �ow variables are changing most rapidly.
Here, the quadtree grids provide high resolution in a band surrounding the free surface; the

interface remains sharp and is tracked by adapting re�nements in the quadtree grid. Results
are calculated on uniform grids and adapting quadtree grids in which the smallest cells are the
same size as those in the uniform grid. In this way, it is demonstrated that the same accuracy
may be achieved using the adapting quadtree scheme as on the equivalent uniform grid.

2. THE VOLUME OF FLUID METHOD, VoF

When considering the incompressible �ow of two immiscible �uids in two dimensions, the
divergence free velocity �eld u(x; y; t) obeys

∇ · u=0 (1)
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The location of the two �uids is speci�ed using a volume fraction function, C, with C=1
inside one �uid and C=0 in the other. Cells for which C lies between 0 and 1 contain the
interface. The volume conservation of the �rst �uid can be expressed as

@C
@t
+∇ · (uC)=0 (2)

and in discrete form is given by

Cn+1 =Cn +
K∑
k=1
fk (3)

where k is the cell face orientation and K is the number of cell faces. For a regular rectangular
grid in two dimensions, K =4 and e, w, n or s (the east, west, north or south face). fk
represents the �ux of C across the k direction cell boundary. Thus,

Cn+1 = Cn + fe − fw + fn − fs (4)

and the cell face �uxes are

fk = uk
�t
�x
Ck (5)

where �t and �x are the time step and mesh size, uk is the velocity at face k and determination
of the cell face value of C is critical. The key to a successful VoF scheme is to solve the
volume fraction equation in a way that keeps the interface sharp.
A VoF method consists of two parts: an interface reconstruction algorithm for approximating

the interface from the set of volume fractions, and a VoF transport algorithm for determining
the volume fractions at the new time level from the velocity �eld and the reconstructed
front. The original VoF scheme of Hirt and Nichols [7] uses an interface construction that
approximates a curved interface as horizontal and vertical lines in each interface cell. The
�uxing scheme uses a combination of upwinding and downwinding. The advantage of the
upwind scheme is that it is stable, but it is di�usive and may spread the interface over many
cells. The downwind scheme is unstable, but sharpens the interface and so is advantageous
in interface tracking. Various VoF �uxing methods have been developed, most of which aim
for a balance between the stability advantages of the upwind scheme and the front sharpening
advantages of the downwind scheme.
Hirt and Nichols [7] �uxing scheme uses either upwinding or a downwinding donor–

acceptor cell approach depending on the local orientation of the interface. Lafaurie et al.
[12] describe a modi�ed downwinding scheme to constrain the volume fraction face value to
prevent more �uid being out�uxed than the cell contains and to ensure that the CFL condi-
tion is satis�ed. Lafaurie et al. [12] also introduced a �otsam indicator �eld, which is used
to ensure that �otsam (a cell partly containing one of the �uids entirely surrounded by cells
full of the other �uid) is �uxed by upwinding rather than downwinding, which would lock it
in place and prevent it being �uxed. This scheme is implemented in the SURFER program.
Traditional VoF schemes describe the interface implicitly since the volume fraction data

must be inverted to �nd the approximate interface position. The interface may be reconstructed
by simple line interface calculation (SLIC) [13] or by various piecewise linear interface
calculation (PLIC) methods [14]. Guey�er et al. [15] developed a VoF=PLIC method and
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1096 D. GREAVES

applied it to simulation of three-dimensional droplets. From the volume fraction �eld, the
normal vector to the interface is constructed. The interface line that divides the cell into two
parts, containing the proper volume of each �uid, is calculated from the normal vector and
required volume of one of the �uids. The line is advected with the local velocity over the
calculation time step and the process is then reversed to determine the volume fraction at the
next time step from the new position of the line.

3. CICSAM VoF

Ubbink [10] derived a compressive di�erencing scheme for discretization of the volume frac-
tion equation (2). The scheme is named Compressive Interface Capturing Scheme for Arbi-
trary Meshes (CICSAM) and is based on the Normalized Variable Diagram (NVD) used by
Leonard [16]. Ubbink’s [10] scheme combines the Convection Boundedness Criteria (CBC)
with the Ultimate Quickest (UQ) di�erencing scheme, which is a version of Leonard’s [17]
QUICK scheme. The normalized face value for the CICSAM di�erencing scheme is calculated
by combining these two schemes through a weighting factor derived from the orientation of
the interface relative to the �uxing direction.
In the CICSAM scheme, the cell face values of C, used in the discretized volume fraction

equation, are determined from a combination of the CBC value given by

C̃fCBC =



min

{
1;
C̃D
cD

}
when 06 C̃D 6 1

C̃D when C̃D¡0; C̃D¿1

(6)

and the UQ value given by

C̃fUQ =



min

{
8cDC̃D + (1− cD)(6C̃D + 3)

8
; C̃fCBC

}
when 06C̃D61

C̃D when C̃D¡0; C̃D¿1

(7)

Here C̃D is the normalized variable for the donor cell, calculated from

C̃D =
CD − CU
CA − CU (8)

where subscript U indicates the upwind cell, A the acceptor and D the donor cell. These
are determined depending on the velocity at a given face. With reference to Figure 1, when
considering the east face of cell C, if ue¿0 then the donor is cell C and cell E is the acceptor;
however if ue¡0 then cell E is the donor and cell C the acceptor. The Courant number, cD,
is calculated by summing the �uxes over each cell face

cD =
n∑
f=1
max

{−Ff �t
VD

; 0
}

(9)

where n is the number of faces, Ff is the volumetric �ux across a given face calculated from
the product of the face velocity and face area, �t is the time step and VD the cell volume.
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Figure 1. Diagram for x-direction �uxing.

The weighting factor used to combine the CBC and UQ contributions takes into account the
orientation of the interface and the �uxing direction

�f = min
{
k�
cos(2�f) + 1

2
; 1
}

(10)

where �k is the orientation angle of the interface with the �uxing direction and k� is a constant
introduced to control the dominance of the di�erent schemes. Ubbink [10] recommends a value
of k�=1. The angle, �k , relative to k-direction �uxing is

�k = arccos(nk) (11)

where nk is the k-direction component of the local approximation to the interface normal,

n=
∇hC
|∇hC| (12)

and ∇h is a �nite di�erence approximation to the gradient operator.
The normalized face value for the CICSAM di�erencing scheme is then

C̃f= �fC̃ f CBC + (1− �f)C̃ f UQ (13)

The weighting factor is given by

�f=
C̃f − C̃D
1− C̃D

(14)

and the face values for the new volume fraction distribution used to solve the discrete volume
fraction equation are

C∗
f =(1− �f)

CtD + C
t+�t
D

2
+ �f

CtA + C
t+�t
A

2
(15)

The superscripts refer to the time level, thus the volume fraction �eld is advected using a
Crank–Nicolson scheme. It is possible for these volume fraction values to have non-physical
values, less than 0 or greater than 1. In the event of this occurring, Ubbink [10] recommends
a corrector step that corrects the weighting factor �f.
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4. QUADTREE GRID GENERATION

Quadtree grids are created about a set of discrete seeding points by recursive subdivision of a
unit square that at the root level surrounds the �ow domain. An advantage of quadtree grids
is they may be stored in a concise grid cell reference numbering system, which contains all
the grid information and forms a tree data structure. The data tree can be traversed according
to simple rules to obtain grid cell reference numbers of ancestor and neighbour cells, also the
grids may be readily adapted by addition or subtraction of grid cells whilst maintaining the
overall tree structure.
Samet [18, 19] describes the quadtree data structure and its application to spatial data prob-

lems. Although quadtree algorithms were �rst used in image processing, they have also been
used extensively as mesh generators. Yerry and Shephard [20] applied quadtree algorithms in
creating �nite element meshes for structural analysis, as did Messaoud [21] for elliptic partial
di�erential systems. Van Dommelen and Rundensteiner [22] modelled �ow past a cylinder us-
ing a discrete vortex scheme, with adaptive remeshing based on quadtrees. Multigrid-quadtree
meshes have been applied [23] to the solution of species transport and linearized shallow �ow
problems in complex domains. Quadtree �nite element methods using quadrilateral and cubic
elements have been used for compressible �ows [24] and quadtree �nite volume methods for
solutions of the Euler equations [25]. Greaves and Borthwick [11, 26] demonstrated hierarchi-
cal grid generation in two dimensions for quadtree grids and in three dimensions for octree
grids. Hu et al. [27] present an adaptive hierarchical tritree grid method with a triangular
�nite volume scheme for simulating laminar �uid �ow.

4.1. The quadtree algorithm

The quadtree algorithm can be summarized as follows:

(1) De�ne the set of boundary seeding points, Pn, about which the grid will be generated.
(2) De�ne the unit square or rectangle (root cell) which surrounds the normalised domain

of interest.
(3) Divide the root cell into four quadrant cells.
(4) Consider each cell; if the cell contains more than two points, continue with (5) other-

wise check the next cell.
(5) Check whether the maximum division level, Mmax, has been reached. If so, the division

of the cell in question is complete, so go to (4) and check the next cell. When all
cells considered either have reached the maximum division, Mmax, or contain less than
three points, the mesh generation is complete. Otherwise continue.

(6) Divide the cell into four cells, return to (4) and check the next cell.

Additional panels are generated to regularize the grid such that the maximum panel edge
length ratio between two adjacent panels does not exceed two. This will limit the variation of
neighbour arrangements encountered when solving discretized equations on the grid. Figure 2
shows the quadtree grid generated for a circular interface with radius equal to 0.125 centred
at (−0:2; 0:2), the origin is at the centre of the root cell. The quadtree grid has a maximum
division level equal to 7 and minimum division level equal to 2. In Figure 2(a) the grid is
not regularized and the large di�erence in size of adjacent cells would make solution of the
discrete equations very di�cult. In Figure 2(b) the grid is regularized to limit the edge length
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(a) (b)

Figure 2. (a) Quadtree grid without regularization and (b) regularized quadtree grid.

ratio; whilst still maintaining a large di�erence in cell size throughout the grid, adjacent cells
are no more than twice the size of one another. A quadtree panel in a regularized grid has
eight possible face and corner neighbours of the same size, and 12 possible neighbours of
one level smaller in size.

4.2. The quadtree numbering system

Several numbering systems are possible for storing the quadtree information, as discussed by
Yiu et al. [28]. Here, the numbering system is essentially due to Van Dommelen and Runden-
steiner [22], and enables the tree reference numbers to be stored as an array of binary digits.
The reference number, N, of a given cell can be regarded as a list of successive orientations
NW, SW, NE or SE corresponding to binary translations 00, 01, 10 and 11, which describe
the position of the cell within its parent, and is stored in four arrays of eight digits. If the
large square in Figure 3 is the root of the tree, then the four smaller squares are the children
of the root cell, created at the �rst division. The full reference number for the NE child
is given by, N (I; 1)=21000000, N (I; 2)=00000000 N (I; 3)=00000000 N (I; 4)=00000000
(note that +1 has been added to each signi�cant digit in order to distinguish it from the
trailing zeros).
Whenever division takes place, four cells are produced having di�erent x and y translations

from the centre of the parent cell. These digits correspond to locations NW, SW, NE or SE
and are appended to the number of the parent cell being divided to produce the reference
number of each child or new cell. Hence, the reference numbers of the parent and all ancestor
cells are contained within the reference number of a given cell. The cell reference number may
be manipulated to extract the generation level of the cell, the reference number of the parent
cell, the co-ordinates of the cell centre and the reference numbers of all possible neighbours
of a cell. The data tree may then be searched to locate the cell neighbours within the grid. The
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SW SE
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1101
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Figure 3. (a) Panel orientations and (b) corresponding binary translations.

manipulation of the numbering system to obtain all of the necessary information is described
in detail by Greaves [29].

5. SOLUTION OF THE NAVIER–STOKES EQUATIONS

The governing equations in primitive form for a two-dimensional �ow are the mass conser-
vation equation

@�
@t
+
@(�u)
@x

+
@(�v)
@y

=0 (16)

and the Navier–Stokes momentum conservation equations

@u
@t
+
@u2

@x
+
@uv
@y

= −1
�
@p
@x
+ �∇2u (17)

@v
@t
+
@uv
@x

+
@v2

@y
= −g− 1

�
@p
@y
+ �∇2v (18)

where x and y de�ne an orthogonal Cartesian co-ordinate system, u and v are the correspond-
ing velocity components, t is time, p is pressure, � is the �uid density, g is the gravitational
acceleration and � is the �uid kinematic viscosity.
The governing equations are discretized using �nite volumes with collocated primitive vari-

ables (u, v and p all de�ned at cell centres) and solved by a pressure correction method
based on that described by Peri�c et al. [30]. The solution method is similar to SIMPLE
[31], but applied on quadtree grids with interpolations to deal with the non-staggered arrange-
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ment of variables, and is described in detail by Greaves and Borthwick [11]. The discretized
momentum equations given by

aPuP =
∑
anbunb + aP0uP0 +

(pW − pE) dy
2

(19)

and

aPvP =
∑
anbvnb + aP0vP0 +

(pS − pN) dx
2

(20)

are summed over all cell faces, where subscript P indicates the cell in question, nb are the
neighbour cells, W is the west, E the east, S is the south and N the north neighbour. Subscript
0 indicates values at the previous time step and ak is a coe�cient combining the convective
and di�usive �uxes.
Here, the pressure gradient term has been discretized using �rst-order central di�erences.

A similar approach for the velocity gradient terms in the mass conservation equation would
result in a solution independent of the pressure and checkerboard oscillations in the velocity
�eld. The face interpolation proposed by Rhie and Chow [32] is adopted here to prevent these
oscillations occurring. The face value of the velocity is predicted by isolating the contribution
of the pressure from the discretized momentum equation when interpolating it to the face.
The contribution of the pressure gradient at the face is then added by calculating it directly
from the pressure values at cell neighbours on either side of the face. Hence, the east face
value is calculated from

ue =

(∑
anbunb + aP0uP0

aP

)
e

+

(
1
aP

)
e

(pP − pE) dy (21)

where the overbar indicates linear interpolation between cell centre values at cell P and E.
This method for calculating the face velocity is used both in the pressure correction equation
and in the discretized volume fraction equation.

5.1. Hanging node treatment

Hanging nodes are inherent in quadtree grids and occur at the centre of a cell face where cells
of di�erent size meet. In order to conserve �uxes, contributions from all cells neighbouring a
given face are used to calculate the �uxes across the face. For example, Equation (4) applied
to cell P in Figure 4 is

Cn+1 = Cn + fe1 + fe2 − fw + fn − fs (22)

where fk is the �ux of C across the k-direction boundary. Neighbouring values of pressure
and velocity for the discretized momentum and pressure correction equations, however, are
calculated by averaging the neighbour values where the neighbour cells are smaller than the
cell in question, or by bi-linear interpolation where the neighbour cell is larger than the cell
in question. With reference to Figure 5, the pressure value to the east of cell P used in the
discretized equations is given by

p∗=
(6pE + 2pNE + 4pP)

12
(23)
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Figure 4. Hanging node treatment for �uxes.
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Figure 5. Interpolation at grid size interface.

The problem of hanging node interpolation across cells in di�erent �uids does not arise
because a band of re�nement is provided around the interface thus ensuring that hanging
nodes are kept away from the interface.

5.2. Adaptive grid scheme

An advantage of quadtree grids is that they can be readily adapted by the addition and removal
of cells throughout a time-dependent simulation. In this work, grid re�nement is used to follow
the movement of the interface and in addition, for the collapsing water column calculations,
re�nement is provided at the base of the domain and in a band surrounding the interface.
Remeshing of the grid operates by dividing a cell into four if it lies on the interface (or

in a band surrounding the interface). Dere�nement also takes place by removing four sibling
cells and replacing them with their parent. This only occurs where each of the four sibling
cells lies away from the interface. Velocity and pressure variables are interpolated onto new
cells using bi-linear interpolation from the neighbours of the divided cell. Alternatively, when
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Figure 6. Cell ABCD is cut by the straight line EH, having normal m and parameter �, and contains
�uid 1 in region ABFGD and �uid 2 in region FCG.

four sibling cells are removed and replaced with their parent, the variables assigned to the
parent are the average of the four sibling values.
Interpolation and extrapolation of the volume fraction, C, is more complicated. The PLIC

[15] reconstruction of the interface in the divided cell is transformed to the co-ordinates of
each newly created cell and the volume fraction determined from the equation of the interface
line segment in each new cell. In the PLIC reconstruction of the interface, a straight line is
de�ned in each interface cell that divides the cell into two parts, each of which contains the
correct volume of one of the two �uids. The equation for a straight line with normal m is

mxx +myy= � (24)

where mx and my are components of m and � is a parameter related to the smallest distance
between the line and the origin. The interface normal is similar to the normal vector determined
using Equation (12), but in this case the vector is not normalized and is calculated from

m=∇hC (25)

The points at which the line intersects the x- and y-axis are at �=mx and �=my, respectively,
points E and H in Figure 6. The area below the line and contained within the cell ABCD is

Area =
�2

2mxmy

[
1−H (�−mxcx)

(
�−mxcx

�

)2
−H (�−mycy)

(
�−mycy

�

)2 ]
(26)
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Figure 7. The shaded areas show the volume fraction of �uid in new
cells 1, 2 and 4 after re�nement of cell 0.

where cx and cy are the cell dimensions and

H (x)=

{
0 for x¡0

1 for x¿0

Figure 7 shows the interface line segment ab in original cell 0, which after cell re�nement
lies in new cells 1, 2 and 4 only. The cell height and width in Equation (26) become
cx= �x=2; cy= �y=2 where �x and �y are the dimensions of the parent cell and the parameter
� is transformed as follows for each of the new cells:

Cell 2 : �∗= �

Cell 3 : �∗= �−my�y=2−mx�x=2
Cell 4 : �∗= �−mx�x=2

(27)

The grid is only dere�ned away from the interface, so the volume fraction for each of the
removed siblings and their parent will be either 0 or 1.

6. RESULTS

6.1. Interface tracking in a prescribed velocity �eld

In order to assess the capabilities of the interface tracking part of the numerical scheme, tests
are �rst carried out for square and circular interfaces being advected through a prescribed
velocity �eld. In these cases, only the volume fraction equation and not the Navier–Stokes
equations are solved.
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Figure 8. Advection of square interface on adaptive quadtree grids. (a) Initial interface contours, t=0s;
(b) uniform grid, t=0:375 s; (c) quadtree grid, t=0:375 s and (d) adapted quadtree grid.

6.1.1. Comparison of uniform and adapting quadtree schemes Uniform translation of a square
interface is �rst investigated on uniform and quadtree adapted grids in order to assess the ben-
e�ts of quadtree grid adaptation. Here, the quadtree grids have a maximum division level equal
to 7 and minimum division level equal to 5 and are compared with a uniform grid of the same
smallest cell size, containing 128× 128 cells. The grids are adapted such that cells containing
the interface are re�ned to the maximum level and cells that no longer contain the interface
are dere�ned to the minimum level.
A unit square domain is used and the initial contours for the square interface, size 0:125×

0:125, positioned at the centre of the grid, are shown in Figure 8(a). The interface is translated
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Table I.

Error Grid size CPU (s)

Translation of square CICSAM uniform grid 1:189e−5 16 884 368.76
CICSAM adapted grid 1:178e−5 1500 77.18

in a constant velocity �eld, u = 1; v = −1 and the time step is determined such that
the Courant number is equal to 0.125. The value of the Courant number is based on the
smallest cell size and must be no greater than one to maintain stability of the numerical
scheme. Several values of Courant number were investigated and 0.125 found to achieve
a good balance between speed of calculation and sharpness of interface. The results are
presented by plotting volume fraction contours at C = 0:05, 0.4, 0.6 and 0.95. With an
accurate interface advection scheme the interface should be translated intact towards the bottom
right-hand corner of the domain. Figures 8(b) and 8(c) show the interface at time t = 0:375 s
calculated on the regular and quadtree grids and Figure 8(d) shows the adapted quadtree grid at
time t=0:375 s.
Table I lists the error, which for a grid of n cells is calculated as

error =
∣∣∣∣
∑n

i=1 Ci�x �y −∑n
i=1 C

initial
i �x �y∑n

i=1 C
initial
i �x �y

∣∣∣∣ (28)

The error calculated for the adaptive quadtree grid scheme is slightly less than that calculated
for the uniform grid scheme. The adapted grid contains typically 1500 cells compared with
the uniform grid, which contains 16 384 cells; the CPU time for each calculation is also listed
in Table I. Using the CICSAM scheme, the quadtree adapted grid size is more than ten times
less than the uniform grid for similar accuracy and the CPU time used is nearly �ve times less
than for the uniform grid calculation. Clearly, despite the extra CPU cost of grid adaptation,
use of the quadtree adapted grid makes a considerable saving in both computer space and
time.

6.1.2. Shear �ow In most real interfacial �ow cases, the interface is moving under the in-
�uence of �uid shear and the interface deforms considerably. Thus, here the ability of the
advection scheme to operate in a shearing �ow �eld is tested. In this case, also investigated by
Ubbink and Issa [33] and Rudman [34], the velocity is prescribed to be u= umax sin � cos �,
v= − vmax cos � sin �, where umax =1:0 and vmax =−1:0. An adapting quadtree grid is used
with maximum division 7 and minimum division 5, and the circle of diameter 0.36 is initially
positioned at x=0:0; y= − 0:2. The interface is �rst advected forward up to t=5 s and then
the velocities are reversed for the same length of time in order to return the volume fraction
�eld to the initial condition. A perfect advection scheme should result in the same initial
volume fraction �eld.
The results of this test are presented in Figure 9. In this case the reconstructed interface is

plotted rather than the volume fraction contours. In Figures 9(a) and 9(b) the initial interface
and initial quadtree grids are shown. The grid also has the velocity vectors (scaled by 0.02)
superimposed. Figures 9(c) and 9(d) show the interface and adapted grid at t=5:0 s and
Figures 9(e) and 9(f ) show the resulting interface and grid after the velocity has been reversed
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(f)(e)

(c) (d)

(b)(a)

Figure 9. Circular interface in shear �ow. (a) Interface at t=0:0 s; (b) quadtree grid at t=0:0 s;
(c) interface at t=5:0s; (d) adapted grid at t=5:0s; (e) interface after reversing from t=5:0s to =0:0s

and (f ) adapted grid after reversing from t=5:0 s to 0:0 s.
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Figure 10. 128× 128 uniform grid. (a) T =0; (b) T =1:617; (c) T =3:233;
(d) T =4:850; (e) T =6:466 and (f) T =8:029.
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and the interface advected for 5 seconds in the opposite direction. After reversing from t=5:0s,
the resulting circular interface is very close to the initial circular interface, despite being highly
distorted at t=5:0 s.

6.2. Collapse of a water column

Simulation of the collapse of a water column has been investigated numerically by various
researchers, such as Ubbink [10], Jeong and Yang [35, 36] and Qian et al. [37] and experimen-
tal data exists from Martin and Moyce [38]. Here, the quadtree adaptive CICSAM interface
tracking method is combined with the Navier–Stokes �ow solver and the simulation calculated
for a series of grid sizes, both uniform and quadtree adaptive. The initial conditions for this
case are shown in Figure 10(a). A unit square tank contains a column of water 0:25 m wide
and 0:5m high held in place at t=0 s. The restraint is then removed instantaneously and the
resulting motion of the water column as it collapses under gravity is simulated. The water
has dynamic viscosity �1 = 1 × 10−3 kg=m=s and the air �2 = 1:7× 10−5 kg=m=s, the density
of water is �1 = 1000 kg=m3 and for air �2 = 1 kg=m3, and the acceleration due to gravity is
taken to be g=9:8m=s. Initially the velocity everywhere is zero; no-slip boundary conditions
are applied on all walls; a free boundary condition for velocity is applied at the top of the
tank and pressure at the top of the tank is �xed at zero.
Results calculated on a uniform 128× 128 grid with time step dt=0:0001 s, are presented

at non-dimensional time steps, T =0, 1.617, 3.233, 4.850, 6.466 and 8.083, where T = t
√
g=a

and a is the width of the water column. The time step required for temporal grid conver-
gence depends on the grid cell size (the smallest cell size in quadtree grids), however, the
calculations presented here all used the time step required for the �nest grid, dt=0:0001 s,
for simplicity. In Figure 10 the reconstructed interface is plotted and in Figure 11 the ve-
locity vectors and interface are plotted together. Velocity vectors are plotted at every fourth
grid point in order not to crowd the �gure. The results agree well with those presented by
Ubbink [10] and Qian et al. [37] and the video images (not shown here) taken by Koshizuka
et al. [39].
Results were also calculated on uniform grid sizes 32× 32 and 64× 64. The results of all

three calculations are summarised in Figure 12. The non-dimensional height of the water
column at the left wall versus the non-dimensional time is shown in Figure 12(a). The pre-
dicted height is the same for all three grid sizes and agrees very well with the experimental
data obtained by Martin and Moyce [38], which is plotted alongside the numerical data. The
non-dimensional position of the leading edge is plotted against non-dimensional time in Fig-
ure 12(b). Martin and Moyce [38] presented two di�erent sets of experimental data for this
case and as observed by Ubbink [10] the numerical results show that the leading edge moves
faster as the grid resolution is increased. The discrepancy between the experimental and nu-
merical results here is possibly due to the di�culty in determining the exact location of the
leading edge in the experiment. A thin layer, similar to a jet, shoots along the base of the
tank, which is di�cult to identify precisely in the photographs. However, it is reasonable to
conclude that a calculation grid with a re�ned mesh at the base will be better able to predict
the progress of the leading edge.
The collapse of the water column was also calculated on quadtree grids, which are re�ned

at the base of the tank and adapt during the solution to provide high resolution at the free
surface. If the cell lies within a band surrounding the interface the cell is divided. Conversely,
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Figure 11. 128× 128 uniform grid, interface and velocity vectors. (a) T =0; (b) T =1:617;
(c) T =3:233; (d) T =4:850; (e) T =6:466 and (f ) T =8:029.
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Figure 12. (a) Height of water column and (b) position of leading edge.
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Figure 13. Comparison and band sizes for 6× 4 quadtree grid. (a) Height of water
column and (b) position of leading edge.

if four sibling cells lie outside of the band, the four sibling cells are removed and replaced
with their parent quadtree cell. The size of the band surrounding the interface is found to be
critical in obtaining an accurate quadtree solution, as also noted by Wang [40]. The largest
inaccuracies in the calculation occur at the interface between cell sizes in the quadtree grid
(at hanging nodes), and would accumulate at the free surface. Investigations were carried out
to assess what size band of the �nest cells around the interface is necessary to keep the error
su�ciently distant from the free surface. A range of band widths were experimented with
and the results for bands of 8, 10, 12 and 14 cells are shown for a 6×4 quadtree grid in
Figure 13.
It can be seen that for the 12 and 14 band the result is very similar, but for the 8

and 10 bands, the height of the water column as it falls is not predicted correctly. The
calculation was also carried out on adapting quadtree grids of size 5 × 3 and 7 × 5. Us-
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Figure 14. Results for 5×3 quadtree grid. (a) Height of water column; (b) position of
leading edge; (c) T =1:617 and (d) T =8:029.

ing a band of 14 cells for the 7 × 5 quadtree grid however, resulted in a large deviation
in the progress of the fronts when compared with the uniform grid calculation. It was
found that the physical distance, rather than the number of cells, between the free sur-
face and the �rst hanging node was critical. Thus for the 5× 3 quadtree grid a band of
6 cells is necessary (distance=0:188); for 6× 4 14 (distance=0:219) and for 7× 5 a band
of 28 (distance=0:219).
The reconstructed interfaces and adapted quadtree grids obtained at T =1:617 and 8.029

are shown in Figures 14–16 for each of the quadtree grids. The results for the 7 × 5 grid
agree well with those calculated on the equivalent uniform grid and presented in Figure 10.
The time histories of the fronts are also plotted in Figures 14–16 together with the results
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Figure 15. Results for 6×4 quadtree grid. (a) Height of water column; (b) position of
leading edge; (c) T =1:617 and (d) T =8:029.

calculated on equivalent uniform grids with cell sizes equal to that of the smallest quadtree
cell. Results comparing the progress of the height and leading edge of the collapsing water
column for all three quadtree grids together with the 128×128 uniform grid are summarised
in Figure 17.
The time histories for each quadtree calculation are almost identical to those calculated

on the equivalent uniform grid and in Figure 17 the results for quadtree grids of increasing
resolution show convergence to the �nest uniform grid calculation. The results show that the
same accuracy can be achieved on the quadtree grids as on their equivalent uniform grid.
Furthermore, using adaptive quadtrees signi�cantly reduces the size of the calculation grid.
For the 7× 5 quadtree grid the number of calculation cells is typically 7156 compared with
16 384 in the equivalent uniform grid.
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Figure 16. Results for 7× 5 quadtree grid. (a) Height of water column; (b) position of
leading edge; (c) T =1:617 and (d) T =8:029.

There is no such saving in CPU time, however, for the Navier Stokes calculation because
of the CPU cost in grid adaptation and interpolation routines. Convergence of the Navier–
Stokes solver on adapting quadtree grids is slow. This is partly because of the lack of order
in the computational grid which necessitates point-by-point iteration and partly due to the
errors introduced at each time step by interpolations on the adapting grids. Optimization of
the Navier–Stokes solution method on quadtree grids and of the interpolation routines will
be addressed in the next stages of this work. The results presented here demonstrate the
encouraging potential of the new method in two-dimensional �ow simulations. It may also be
extended in a straightforward manner to three dimensions and, with the inclusion of a suitable
closure model, to simulation of turbulent �ows where hierarchical grids are ideally suited to
resolving the �ne detail of structures in the �ow.
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Figure 17. Comparison of quadtree grid results. (a) Height of water
column and (b) position of leading edge.

7. CONCLUSIONS

The adaptive quadtree volume of �uid method developed here shows great potential in the
simulation of complex free surface �ows. The new method uses CICSAM di�erencing for
advection of the interface and PLIC reconstruction for interpolation of the volume fraction as
the grid adapts. The examples of interface advection in prescribed velocity �elds demonstrate
that the adapting quadtree grids provide high resolution at the interface at low computational
cost.
When combined with a Navier–Stokes solver and used to simulate the collapse of a water

column, it is found that a re�ned band surrounding the interface of width 0:22l, where l
is the height of the domain, is necessary to achieve the same accuracy as an equivalent
uniform grid. Use of quadtree grids is particularly suitable in this case because of the extra
re�nement needed to track the progress of the water jet along the base of the tank. The
main areas for improvement in this scheme are in the slow convergence of the Navier–Stokes
solver and the use of point by point iteration on the quadtree grids. However, the adaptive
quadtree results are in excellent agreement with experimental and other numerical data, a
sharp interface is maintained at the free surface and a considerable saving is made in the size
of the computational grid.
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